KAGUYA (SELENE) Product Format Description - Gamma Ray Spectrometer (GRS)-

Version 1.0

November 1, 2009

INDEX

1. Introduction 1
1.1 Purpose 1
1.2 The composition of this format description 1
1.3 Data Set
1.3.1 Product
1.3.2 Catalog Information File 3
1.3.3 Thumbnail Image File 3
1.4 GRS Products
2. Gamma Ray Energy Spectrum
2.1 Rules used for File naming7
2.2 Label Format
2.3 Data Object Format
2.4 Catalog Information File Format11
3. Gamma Ray Intensity Map, Nuclide Map13
3.1 Rules used for File naming13
3.2 Label Format14
3.3 Data Object Format17
3.4 Catalog Information File Format19

1. Introduction

1.1 Purpose

This document describes the format^{*2} used for the catalog and product files for the Gamma Ray Spectrometer^{*1}(GRS) that was board KAGUYA (SELENE). These files provided by Japan Aerospace Exploration Agency (JAXA).

*1 : Refer to the following "Project Homepage of KAGUYA" and "Image Gallery of KAGUYA" used for the GRS mission.

- ✓ Project Homepage for KAGUYA <u>http://www.kaguya.jaxa.jp/en/equipment/grs_e.htm</u>
- ✓ Image Gallery for KAGUYA http://wms.selene.darts.isas.jaxa.jp/selene_viewer/en/observation_mission/grs/

*2: The data format used for SELENE is based on the PDS (Planetary Data System) by NASA. However, the data format is not fully compliant with the PDS format.

1.2 The composition of this format description

Table 1-1 shows the composition of this format description.

No	INDEX	Title	Description content
1	Section 1.3	Table 1-2 GRS Products List	The name of the product, the object form, and the composition of the product are described as a product list illustrated by this description.
1	Section 1.5	Table 1-3 Product Description	Concerning each product shown in the No1 product list, the content included in data and the description of the observation method are illustrated.
2	Chapter X	" Product Name"	Concerning the product shown in the No1 product list, rules used for file naming, label format, data object format and catalog information file format are described.
3	Section X.1	Rules used for File naming	Concerning the product shown in No2, the rules of file nomenclature is described.
4	Section X.2	Label Format	Concerning the product shown in No2, the label format is described.
5	Section X.3	Data Object Format	Concerning the product shown in No2, the data format of the data object is described. (The extension of the data file is unique in each product. Therefore, refer to the file nomenclature in No3.)
6	Section X.4	Catalog Information File Format	Concerning the product shown in No2, the format of the catalog information file (extension: .ctg) of the product is described.
7	Chapter X+1		
		Same as above	

Table 1-1 the composition of this format description

1.3 Data Set

The Data Set refers to a set consisting of: Product, Catalog Information, and Thumbnail Image (JPEG format), which are tar-archived. This set is referred to as the "L2 Data Set". The file extension is "SL2". However, the thumbnail image may be omitted at the by composer's judgment.

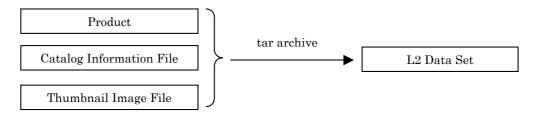


Figure 1-1 composition of the L2 Data Set

1.3.1 Product

For product composition, two possible options are available. Product Composition – Attached consists of label information and data information in a single data file. Product Composition – detached consists of separate files for the label file and data file.

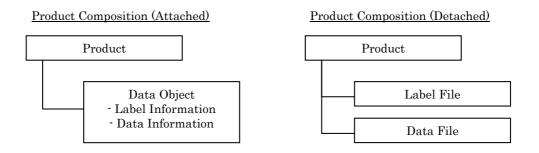


Figure 1-2 Product Composition : Attached and Detached

- Label File (Data Object (Label Information) The Label File (Label Information) is storing as text format the information that identifies the Data File (Data Information).
- (2) Data File (Data Object (Data Information)) The data File (Data Object (Data Information)) of the product are classified into the following four data types.

a) IMAGE : image data

An IMAGE is a two-dimensional array of values, all of the same type, each of which is referred to as a sample. IMAGE are normally processed with special display tools to produce a visual representation of the samples by assigning brightness levels or display colors to the values. An IMAGE consists of a series of lines, each containing the same number of samples. *Refer to the PDS Standard Reference V3.8 Appendix A.20 "IMAGE".

 b) TABLE : tabular form data TABLEs are a natural storage format for collections of data from many instruments. The TABLE is a uniform collection of rows containing ASCII or binary values stored in columns.
*Refer to the PDS Standard Reference V3.8 Appendix A.29 "TABLE".

c) SERIES : time series data The SERIES is a sub-class of the TABLE. It is used for storing a sequence of measurements organized in a specific way. The sampling parameter keywords in the SERIES represent the variation between the ROWS of data. *Refer to the PDS Standard Reference V3.8 Appendix A.24 "SERIES"

d) TEXT : text data The TEXT describes a file which contains plain text. *Refer to the PDS Standard Reference V3.8 Appendix A.30 "TEXT".

1.3.2 Catalog Information File

Catalog Information File is the information file attached to explain the general of the product and is used to search for the product from L2DB subsystem.

1.3.3 Thumbnail Image File

Thumbnail Image File is the reduced image of the data object, and is the JPEG format image. However, the thumbnail image may be omitted at the by composer's judgment.

1.4 GRS Products

The list of GRS products, which this document describes, is shown in Table 1-2. In addition, the description for each product is shown in Table 1-3.

StandardGamma Ray Energy Spectrum 2GRS_EnergySpectrum_2TAB2Gamma Ray Intensity Map A (K, Th, O, Fe, Si)GRS_GammaRayMap_A_KIMA4GRS_GammaRayMap_A_ThIMA4GRS_GammaRayMap_A_OIMA4GRS_GammaRayMap_A_OIMA4GRS_GammaRayMap_A_FeIMA4GRS_GammaRayMap_A_FeIMA4GRS_GammaRayMap_A_SiIMA4GRS_GammaRayMap_A_SiIMA4GRS_GammaRayMap_B_UIMA4GRS_GammaRayMap_B_LUIMA4GRS_GammaRayMap_B_AIIMA4GRS_GammaRayMap_B_AIIMA4GRS_GammaRayMap_B_AIIMA4GRS_GammaRayMap_B_CaIMA	GE A GE A
Gamma Ray Intensity Map AGRS_GammaRayMap_A_ThIMA(K, Th, O, Fe, Si)GRS_GammaRayMap_A_OIMAGRS_GammaRayMap_A_OIMAGRS_GammaRayMap_A_FeIMAGRS_GammaRayMap_A_SiIMAGRS_GammaRayMap_A_SiIMAGamma Ray Intensity Map BGRS_GammaRayMap_B_AIIMA	GE A
(K, Th, O, Fe, Si) GRS_GammaRayMap_A_O IMA GRS_GammaRayMap_A_Fe IMA GRS_GammaRayMap_A_Si IMA GRS_GammaRayMap_A_Si IMA GRS_GammaRayMap_A_Si IMA Gamma Ray Intensity Map B GRS_GammaRayMap_B_Al IMA	
Standard GRS_GammaRayMap_A_Fe IMA Gamma Ray Intensity Map B GRS_GammaRayMap_B_AI IMA	
Standard GRS_GammaRayMap_A_Si IMA Gamma Ray Intensity Map B GRS_GammaRayMap_B_Al IMA	GE A
Standard Gamma Ray Intensity Map B GRS_GammaRayMap_B_Al IMA	GE A
Gamma Ray Intensity Map B GRS_GammaRayMap_B_Al IMA	GE A
	GE A
(U, Al, Ca, Mg, Ti) GRS_GammaRayMap_B_Ca IMA	GE A
	GE A
GRS_GammaRayMap_B_Mg IMA	GE A
GRS_GammaRayMap_B_Ti IMA	GE A
GRS_NuclideMap_A_K IMA	GE A
Nuclide Map A GRS_NuclideMap_A_Th IMA	GE A
(K, Th, O, Fe, Si) GRS_NuclideMap_A_O IMA	GE A
GRS_NuclideMap_A_Fe IMA	GE A
GRS_NuclideMap_A_Si IMA	GE A
Higher Level GRS_NuclideMap_B_U IMA	GE A
Nuclide Map B GRS_NuclideMap_B_Al IMA	GE A
(U, Al, Ca, Mg, Ti) GRS_NuclideMap_B_Ca IMA	GE A
GRS_NuclideMap_B_Mg IMA	GE A
GRS_NuclideMap_B_Ti IMA	

Table 1-2 GRS Products List

:Map product

*2 Product Format : A - Attached, D - Detached

^{*1} Data obtained by equipments is not clear as it is, therefore various processings and correction treatment are necessary by the ground system. According to the difference in the process of processing and correction treatment, they can be classified to the standard processing and higher-level processing. The higher-level processing refers to the standard processing data to which various processing and correction treatment are conducted according to the research purpose et cetra.

Product Name	Product ID
Gamma Ray Energy Spectrum 2	Energy spectra of gamma rays obtained by GRS for the energy ranges of from 0.2 to 12 MeV (low gain spectrum) and from 0.2 to 3 MeV (high gain spectrum). The spectra are accumulated in the regions with about 900 km \times 900 km for 1 month. This product is corrected for the energy calibration and the observation time of GRS.
Gamma Ray Intensity Map (K)	Count rate map of gamma rays from potassium observed over 100 km altitude. The count rates are derived by fitting the gamma-ray line in spectra accumulated in cells that cover the entire Moon. In this procedure, the net counts are not corrected for backgrounds from the spacecraft or the GRS instrument. The gamma-ray intensity may not be obtained with high precision in the beginning of the mission since the sufficient accumulation time is necessary. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Gamma Ray Intensity Map (Th)	Count rate map of gamma rays from a nuclide in thorium series observed over 100 km altitude. The count rates are derived by fitting the gamma-ray line in spectra accumulated in cells that cover the entire Moon. In this procedure, the net counts are not corrected for backgrounds from the spacecraft or the GRS instrument. The gamma-ray intensity may not be obtained with high precision in the beginning of the mission since the sufficient accumulation time is necessary. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Gamma Ray Intensity Map (O)	Count rate map of gamma rays from oxygen observed over 100 km altitude. The count rates are derived by fitting the gamma ray line in spectra accumulated in cells that cover the entire Moon. In this procedure, the net counts are not corrected for backgrounds from the spacecraft or the GRS instrument. The gamma ray intensity may not be obtained with high precision in the beginning of the mission since the sufficient accumulation time is necessary. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Gamma Ray Intensity Map (Fe)	Count rate map of gamma rays from iron observed over 100 km altitude. The count rates are derived by fitting the gamma-ray line of in spectra accumulated in cells that cover the entire Moon. In this procedure, the net counts are not corrected for backgrounds from the spacecraft or the GRS instrument. The gamma-ray intensity may not be obtained with high precision in the beginning of the mission since the sufficient accumulation time is necessary. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Gamma Ray Intensity Map (Si)	Count rate map of gamma rays from silicon observed over 100 km altitude. The count rates are derived by fitting the gamma-ray line in spectra accumulated in cells that cover the entire Moon. In this procedure, the net counts are not corrected for backgrounds from the spacecraft or the GRS instrument. The gamma-ray intensity may not be obtained with high precision in the beginning of the mission since the sufficient accumulation time is necessary. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Gamma Ray Intensity Map (U)	Count rate map of gamma rays from a nuclide in uranium series observed over 100 km altitude. The count rates are derived by fitting the gamma-ray line in spectra accumulated in cells that cover the entire Moon. In this procedure, the net counts are not corrected for backgrounds from the spacecraft or the GRS instrument. The gamma-ray intensity may not be obtained with high precision in the beginning of the mission since the sufficient accumulation time is necessary. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Gamma Ray Intensity Map (Al)	Count rate map of gamma rays from aluminum observed over 100 km altitude. The count rates are derived by fitting the gamma-ray line in spectra accumulated in cells that cover the entire Moon. In this procedure, the net counts are not corrected for backgrounds from the spacecraft or the GRS instrument. The gamma-ray intensity may not be obtained with high precision in the beginning of the mission since the sufficient accumulation time is necessary. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.

Table 1-3 Product Description

	Count rate map of gamma rays from calcium observed over 100 km altitude.
Gamma Ray Intensity Map (Ca)	The count rates are derived by fitting the gamma-ray line in spectra accumulated in cells that cover the entire Moon. In this procedure, the net counts are not corrected for backgrounds from the spacecraft or the GRS instrument. The gamma-ray intensity may not be obtained with high precision in the beginning of the mission since the sufficient accumulation time is necessary. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Gamma Ray Intensity Map (Mg)	Count rate map of gamma rays from magnesium observed over 100 km altitude. The count rates are derived by fitting the gamma-ray line in spectra accumulated in cells that cover the entire Moon. In this procedure, the net counts are not corrected for backgrounds from the spacecraft or the GRS instrument. The gamma-ray intensity may not be obtained with high precision in the beginning of the mission since the sufficient accumulation time is necessary. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Gamma Ray Intensity Map (Ti)	Count rate map of gamma rays from titanium observed over 100 km altitude. The count rates are derived by fitting the gamma-ray line in spectra accumulated in cells that cover the entire Moon. In this procedure, the net counts are not corrected for backgrounds from the spacecraft or the GRS instrument. The gamma-ray intensity may not be obtained with high precision in the beginning of the mission since the sufficient accumulation time is necessary. The data set is preliminary processed by possible methods available by the time of distribution, and is subject for update in the future.
Nuclide Map (K)	Elemental distribution map in mass fraction of potassium in the sub-surface of the Moon measured by GRS. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Nuclide Map (Th)	Elemental distribution map in mass fraction of thorium in the sub-surface of the Moon measured by GRS. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Nuclide Map (O)	Elemental distribution map in mass fraction of oxygen in the sub-surface of the Moon measured by GRS. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Nuclide Map (Fe)	Elemental distribution map in mass fraction of iron in the sub-surface of the Moon measured by GRS. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Nuclide Map (Si)	Elemental distribution map in mass fraction of silicon in the sub-surface of the Moon measured by GRS. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Nuclide Map (U)	Elemental distribution map in mass fraction of uranium in the sub-surface of the Moon measured by GRS. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Nuclide Map (Al)	Elemental distribution map in mass fraction of aluminum in the sub-surface of the Moon measured by GRS. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Nuclide Map (Ca)	Elemental distribution map in mass fraction of calcium in the sub-surface of the Moon measured by GRS. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Nuclide Map (Mg)	Elemental distribution map in mass fraction of magnesium in the sub-surface of the Moon measured by GRS. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.
Nuclide Map (Ti)	Elemental distribution map in mass fraction of titanium in the sub-surface of the Moon measured by GRS. The data set is preliminary processed by possible methods available by the time of distribution, and is subject to update in the future.

2. Gamma Ray Energy Spectrum

2.1 Rules used for File naming

The nomenclature used for Label, Data Object and Catalog Information File the GRS products are described below. In addition, the file names are case-independent.

GRS_ESPEC2_*YYMMDD_YYMMDD.ext* : Gamma Ray Energy Spectrum 2

• *YYMMDD_YYMMDD*: "Start Date _ End Date" of observation

(6 characters each)

- *ext* : File Extension
 - \checkmark tbl : Product
 - ✓ ctg ∶Catalog Information File
 - ✓ sl2 : L2 Data Set (tar archive)

<Example of Name : Gamma Ray Energy Spectrum 2> GRS_ESPEC2_071214_080218.tbl (Product File)

2.2 Label Format

The Label format for the TABLE object used for the Gamma Ray Energy Spectrum 2 is shown in Table 2-1. The Label of TABLE object includes: Standard Item.

In Table 2-1, the numerical values and the character strings that correspond to the type of the product, etc. is set, with the exception of those values shown as "STATIC".

No.	Items	Elements	Types	Values		
Standard Item						
1	PDS version number	PDS_VERSION_ID = %s	char	PDS3 [STATIC]		
2	Record format of the file	RECORD_TYPE = %s	char	UNDEFINED [STATIC]		
3	File name	FILE_NAME = %s	char	See Section 2.1 "Rules used for File naming".		
4	Name of the mission	MISSION_NAME = %s	char	SELENE [STATIC]		
5	Name of the spacecraft	SPACECRAFT_NAME = %s	char	SELENE-M[STATIC]		
6	Name of the instrument (Full name)	INSTRUMENT_NAME = %s	char	GRS [STATIC]		
7	Product name	PRODUCT_SET_ID = %s	char	See Table 1-2 "Product_ID".		
8	Version number of the product	PRODUCT_VERSION_ID = %s	char	X.X		
9	Target name	TARGET_NAME = %s	char	MOON [STATIC]		
10	Comment	COMMENT_TEXT = "%s"	char	X		
11	Starting position of the table object	^TABLE = %d <bytes></bytes>	int	XXX <bytes></bytes>		
END St	tatements					
		END				

Table 2	-1 Lab	oel Format	t
---------	--------	------------	---

<Example of Label : Gamma Ray Energy Spectrum 2>

FILE_NAME INSTRUMENT_NAME PRODUCT_SET_ID PRODUCT_VERSION_ID PDS_VERSION_ID RECORD_TYPE MISSION_NAME SPACECRAFT_NAME TARGET_NAME COMMENT_TEXT ^TABLE END = GRS_ESPEC2_071214_080218.tbl = GRS

= GRS_EnergySpectrum_2

- = 1.0
- = PDS3
- = UNDEFINED
- = SELENE

= SELENE-M

- = MOON
- = "Energy Spectrum"
- =414 < BYTES >

2.3 Data Object Format

The data format for the Gamma Ray Energy Spectrum 2 products includes multiple pixel spectrum data. One pixel data consists of one ROW. Each ROW consists of 6 COLUMNs. Additionally, each COLUMN includes multiple ITEMs, as shown in Table 2-2. (All float elements are 4 bytes. One ROW is fixed at a length of 65596 bytes.)

COLUMN	Data	Description	Size
1	Pixel coordinate	The pixel coordinates are expressed by the 8 ITEMs, which are the northwestern-most, northeastern-most, southwestern-most, and the southeastern-most, latitude and longitude coordinates.	float×8
2	Observation time	Observation time is expressed in seconds	float×1
3	high-gain conversion coefficient for data	The coefficient of conversion equation is shown by 3 ITEMs in the order of 0^{th} , 1^{st} , 2^{nd} .	float×3
4	high-gain data	Spectrum count data is entered sequentially from 0ch to 8191ch (8192 ITEMs).	float×8192
5	low-gain conversion coefficient for data	Same as COLUMN 3.	float×3
6	low-gain data	Same as COLUMN 4.	float×8192

Table 2-2 Contents of one ROW

•	Byt	e pos	ition		
T					Northwestern-most latitude
	0	-	3		(expressed in degrees)
					Northwestern-most longitud
	4	-	7		(expressed in degrees)
					Northeastern-most latitude
	8	-	11		(expressed in degrees)
					Northeastern-most longitud
	12	-	15	COL1	(expressed in degrees)
				COLI	Southwestern-most latitude
	16	-	19		(expressed in degrees)
					Southwestern-most longitud
	20	-	23		(expressed in degrees)
	24				Southeastern-most latitude
ROW 1		-	27		(expressed in degrees)
					Southeastern-most longitud
	28	-	31		(expressed in degrees)
	32	-	35	COL2	Observation time
					Conversion equation 0 th
	36	-	39		coefficient
				COL9	Conversion equation first
	40 -	-	- 43	COL3	coefficient
					Conversion equation secon
	44	-	47		coefficient
	48	-	51		high-gain 0ch
	52	-	55		high-gain 1ch
				COL4	
	32812	-	32815		high-gain 8191ch
					Conversion equation 0 th
	32816	-	32819		coefficient
				$\operatorname{COL5}$	Conversion equation first
	32820	-	32823	COL5	coefficient
					Conversion equation secon
	32824	-	32827		coefficient
	32828	-	32831		low-gain 0ch
	32832	-	32835	001.0	low-gain 1ch
				COL6	
	65592		95595		low-gain 8191ch
OW 2 👗	65596			COL1	
			131191	COL6	low-gain 8191ch

The byte position of each data part is shown in Figure 2-1 Data unit format

Figure 2-1 Data unit format

2.4 Catalog Information File Format

The Catalog Information File Format is shown in Table 2-3.

Table 2-3 Catalog Information File Format

Item Name	Elements	Format of Value	Range of Value	Values
Name of the data file (*1)	DataFileName	AAAAAAAA (Up to 31 digits)	alphanumeric characters	dependent on the product (See Section 2.1 "Rules used for File naming".)
Size of the data file	DataFileSize	NNNNNNNNNNN (Up to 12 digits)	unit: <byte></byte>	dependent on the product
File format of the data file	DataFileFormat	AAAAAAAA (Up to 16 digits)	character strings	PDS [STATIC]
Name of the instrument	InstrumentName	AAAAAAAA (Up to 16 digits)	character strings	GRS [STATIC]
Processing level	ProcessingLevel	AAAAAAAA (Up to 16 digits)	character strings	dependent on the product (See Table 1-2 "Level".)
Product ID	ProductID	AAAAAAAA (Up to 30 digits)	character strings	dependent on the product (See Table 1-2 "Product_ID".)
Version number of the product	ProductVersion	AAAAAAAA (Up to 16 digits)	character strings	dependent on the product
Access level	AccessLevel	Ν	values of 0-4	N/A
Start time	StartDateTime	yyyy- mmddT hh: mm: ss.ssssssZ	DATE & TIME	dependent on the product
Stop time	EndDateTime	yyyy- mmddT hh: mm: ss.sssssZ	DATE & TIME	dependent on the product
Upper left latitude of the scene	UpperLeftLatitude	SNN.NNNNNN	-90-90	90.0[STATIC]
Upper left longitude of the scene	UpperLeftLongitude	NNN.NNNNNN	0-360	0.0[STATIC]
Upper right latitude of the scene	UpperRightLatitude	SNN.NNNNNN	-90-90	90.0[STATIC]
Upper right longitude of the scene	UpperRightLongitude	NNN.NNNNNN	0-360	360.0[STATIC]
Lower left latitude of the scene	LowerLeftLatitude	SNN.NNNNNN	-90-90	-90.0[STATIC]
Lower left longitude of the scene	LowerLeftLongitude	NNN.NNNNNN	0-360	360.0[STATIC]
Lower right latitude of the scene	LowerRightLatitude	SNN.NNNNNN	-90-90	-90.0[STATIC]
Lower right longitude of the scene	LowerRightLongitude	NNN.NNNNNN	0-360	360.0[STATIC]

(*1) "DataFileName" is the stored file name of the product. For the detached format, this is the stored file name.

<Example of Catalog Information: Gamma Ray Energy Spectrum 2> DataFileName = GRS_ESPEC2_071214_080218.tbl

DataFileName	$=$ GRS_ESPEC2_071214_080218.t
DataFileFormat	= PDS
#	
InstrumentName	= GRS
ProcessingLevel	= standard
ProductID	= GRS_EnergySpectrum_2
ProductVersion	= 1.0
AccessLevel	= 3
StartDateTime	$= 2007 \cdot 12 \cdot 14T00:00:00.000000Z$
EndDateTime	= 2008-02-18T00:00:00.000000Z
#	
UpperLeftLatitude	= 90.0

UpperLeftLongitude	= 0.0
UpperRightLatitude	= 90.0
UpperRightLongitude	= 360.0
LowerLeftLatitude	= -90.0
LowerLeftLongitude	= 0.0
LowerRightLatitude	= -90.0
LowerRightLongitude	= 360.0
#	
DataFileSize	= 3149022

3. Gamma Ray Intensity Map, Nuclide Map

3.1 Rules used for File naming

GRS_IMAP_ <i>MM_YYMMDD_yymmdd.ex</i> t	: Gamma Ray Intensity Map
GRS_IMAP_ <i>MM</i> _H_ <i>YYMMDD_yymmdd.ex</i> t	: Gamma Ray Intensity Map
	(In the case of High-resolution)
GRS_NMAP_ <i>MM_YYMMDD_yymmdd.e</i> xt	: Nuclide Map
GRS_NMAP_MM_H_YYMMDD_yymmdd.ext	: Nuclide Map
	(In the case of High-resolution)

- *MM* : Elemental type
 - ✓ K, Th, O, Fe, Si, U, Al, Ca, Mg, Ti
- *YYMMDD*: Start date of observation
- *yymmdd* : End date of observation
- *ext* : File Extension
 - ✓ img : Product
 - ✓ ctg ∶Catalog Information File
 - ✓ jpg ∶Thumbnail JPEG Image File
 - ✓ sl2 : L2 Data Set (tar archive)

<Example of Name : Gamma Ray Intensity Map (K)> GRS_IMAP_K_071212_080217.img (Product File)

3.2 Label Format

The Label format for the IMAGE object used for the Gamma Ray Intensity Map and Nuclide Map is shown in

Table 3-1. The Label for the IMAGE object includes: Standard Item, Image Data Object Format Description Part and IMAGE_MAP_PROJECTION Object Description Part.

In

Table 3-1 with the exception of the Values expressed as "STATIC", the numerical values and the character strings corresponding to the type of the product etc., are set.

No	Items	Elements	Types	Values
Star	ndard Item (/* BASIC '	*/)		
1	PDS version number	PDS_VERSION_ID = %s	char	PDS3 [STATIC]
2	Record format of the file	RECORD_TYPE = %s	char	UNDEFINED [STATIC]
3	File name	FILE_NAME = %s	char	See Section 3.1 "Rules used for File naming".
4	Name of the mission	MISSION_NAME = %s	char	SELENE [STATIC]
5	Name of the spacecraft	SPACECRAFT_NAME = %s	char	SELENE-M[STATIC]
6	Name of the instrument	INSTRUMENT_NAME = %s	char	GRS [STATIC]
7	Product name	PRODUCT_SET_ID = %s	char	See Table 1-2 "Product_ID".
8	Version number of the product	PRODUCT_VERSION_ID = %s	char	X.X
9	Target name	TARGET_NAME = %s	char	MOON [STATIC]
10	Comment	COMMENT_TEXT = "%s"	char	X
11	Starting position of the image object	^IMAGE = %d <bytes></bytes>	int	XXXX <bytes></bytes>
Ima	ge Data Object Format	; Description Part(/* IMAGE */)		
		OBJECT = IMAGE		
11	Band storage type	BAND_STORAGE_TYPE = %s		BAND_SEQUENTIAL [STATIC] *Refer to the PDS Standard Reference V3.5 Appendix A.19 "IMAGE".
12	Number of bands	BANDS = %d sm		1[STATIC]
13	Maximum of the data	DERIVED_MAXIMUM = %f	float	XXX
14	Minimum of the data	DERIVED_MINIMUM = %f	float	XXX
15	Compression class and encoding type			N/A [STATIC]
16	Alternative value outside assumption	INVALID_CONSTANT = %s	char	х
17	Horizontal pixel count of image	LINE_SAMPLES = %d	int	XX
18	Vertical pixel count of image	LINES = %d	int	XX
19	Alternative value of missing value	of MISSING_CONSTANT = %s char		X(may be omitted)
20	Offset			X.X
21	Significant bit mask			111111111111111[STATIC]
22	Pixel bit length	SAMPLE_BITS = %d	int	16[STATIC]
23	Pixel type	SAMPLE_TYPE = %s	char	MSB_INTEGER MSB_UNSIGNED_INTEGER * Refer to the PDS Standard Reference V3.5 Appendix C.1 and C.2 for further

Table 3-1 Label Format

				information.				
24	Scaling factor	SCALING_FACTOR = %f	float	X.X				
25	Stretched Flag	STRETCHED_FLAG = %s	char	FALS E[STATIC]				
		END_OBJECT = IMAGE						
IMA */)	IMAGE_MAP_PROJECTION Object Description Part(/* IMAGE_MAP_PROJECTION */)							
·		OBJECT = IMAGE_MAP_PROJECTION						
26	Semi-major axis of the ellipsoidal body	A_AXIS_RADIUS = %f <km></km>	float	1737.400 <km> [STATIC]</km>				
27	medial axis of ellipsoidal body	B_AXIS_RADIUS = %f <km></km>	float	1737.400 <km> [STATIC]</km>				
28	Semi-minor axis of ellipsoidal body	ninor axis of CAXIS RADIUS - %fcKM>		1737.400 <km> [STATIC]</km>				
29	Name of coordinate system	COORDINATE_SYSTEM_NAME = "%s"	char	"PLANETOCENTRIC "[STATIC]				
30	Type of coordinate system	COORDINATE_SYSTEM_TYPE = "%s"	char	"BODY-FIXED ROTATING" [STATIC]				
31	Easternmost longitude	EASTERNMOST_LONGITUDE = %f	float	360.0 [STATIC]				
32	Westernmost longitude	WESTERNMOST_LONGITUDE = %f	float	0.0 [STATIC]				
33	Maximum latitude	MAXIMUM_LATITUDE = %f	float	90.0 [STATIC]				
34	Minimum latitude	MINIMUM_LATITUDE = %f	float	-90.0 [STATIC]				
35	Map projection type	MAP_PROJECTION_TYPE = "%s"	char	SIMPLE_CYLINDRICAL [STATIC]				
36	Resolution	MAP_RESOLUTION = %f <pixel degree=""></pixel>	float	Х				
37	Direction of positive longitude	POSITIVE_LONGITUDE_DIRECTION = "%s"	char	EAST [STATIC]				
		END_OBJECT = IMAGE_MAP_PROJECTION						
END statement								
		END						

<Example of Label : Gamma Ray Intensity Map A (K)>

FILE_NAME = GRS_IMAP_K_071212_080217.img $INSTRUMENT_NAME = GRS$ PRODUCT_SET_ID = GRS_GammaRayMap_A_K PRODUCT_VERSION_ID = 1.0 PDS_VERSION_ID = PDS3 RECORD_TYPE = UNDEFINED MISSION_NAME = SELENE SPACECRAFT_NAME = SELENE-M TARGET_NAME = MOON COMMENT_TEXT = "this is a sample data, containing the intensity map of gamma rays emitted from Pottasium on lunar subsurface." OBJECT = IMAGE_MAP_PROJECTION A_AXIS_RADIUS = 1737.400<KM> B_AXIS_RADIUS = 1737.400<KM> C_AXIS_RADIUS = 1737.400<KM> COORDINATE_SYSTEM_NAME = "PLANETOCENTRIC" COORDINATE_SYSTEM_TYPE = "BODY-FIXED ROTATING" EASTERNMOST_LONGITUDE = 360.0 WESTERNMOST_LONGITUDE = 0.0 MAXIMUM_LATITUDE = 90.0 MINIMUM_LATITUDE = -90.0 MAP_PROJECTION_TYPE = "SIMPLE CYLINDRICAL" MAP_RESOLUTION = 1<PIXEL/DEGREE> POSITIVE_LONGITUDE_DIRECTION = "EAST" END_OBJECT = IMAGE_MAP_PROJECTION OBJECT = IMAGE BAND_STORAGE_TYPE = BAND_SEQUENTIAL BANDS = 1ENCODING_TYPE = N/A INVALID_CONSTANT = 65535

LINE_SAMPLES = 360 LINES = 180 MISSING_CONSTANT = 0 OFFSET = 0.0 SAMPLE_BIT_MASK = 111111111111111 SAMPLE_BITS = 16 SAMPLE_TYPE = MSB_UNSIGNED_INTEGER STRETCHED_FLAG = FALSE DERIVED_MINIMUM = GRS_IMAP_K_071212_080217.img DERIVED_MAXIMUM = GRS_IMAP_K_071212_080217.img SCALING_FACTOR = GRS_IMAP_K_071212_080217.img END_OBJECT = IMAGE ^IMAGE = 1391 < BYTES> END

3.3 Data Object Format

The data objects of the Gamma Ray Intensity Map and Nuclide Map includes multiple pixel Gamma Ray Intensity or Elemental Concentration. The file format is composed of 180 Rows. One row consists of 360 COLUMNs of BAND_SEQUNTIAL. The number of ROWs are fixed at 180 lines. One COLUMN represents one pixel (1 latitude \times 1 longitude) The 360 data elements encompasses the entire longitude directions (180 degree of longitude as defined as the center of near side of the moon and points from 0 to 360 degree) with certain latitudes that are included within each ROW. The first ROW corresponds to the 90 degree of latitude (North Pole). The 180th ROW corresponds to the -90 degree of latitude (South Pole) (See Figure 3-1). The numerical value included within COLUMN 1 is 1 ITEM and the unsigned short int type (2 byte integer). The physical unit of each map data is listed within the comment sections of the map product.

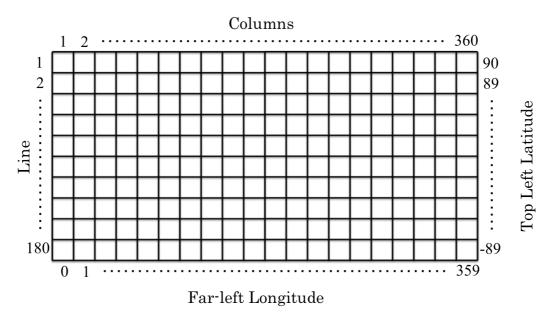


Figure 3-1 ROWs of latitude data and COLUMNs of longitude data

	Byte position		COLUMN	Data Element	Data type			
	0	-	1	COL1	gamma ray intensity or elemental concentration	unsigned short int×1		
-	2	-	3	COL2	gamma ray intensity or elemental concentration	unsigned short int×1		
Line 1	4	-	5	COL3	gamma ray intensity or elemental concentration	unsigned short int×1		
	718	-	719	COL360	gamma ray intensity or elemental concentration	unsigned short int×1		
21	720	-	721	COL1	gamma ray intensity or elemental concentration	unsigned short int×1		
Line 2								
П	1438	-	1439	COL360	gamma ray intensity or elemental concentration	unsigned short int×1		
:								
•								
Line 360	128880	-	128881	COL1	gamma ray intensity or elemental concentration	unsigned short int×1		
Li	129598	-	129599	COL360	gamma ray intensity or elemental concentration	unsigned short int×1		

Figure 3-2 Format of map data

3.4 Catalog Information File Format

The Catalog Information File Format is shown in Table 3-2.

Item Name	Elements	Format of Value	Range of Value	Values		
Name of the data file (*1)	DataFileName	AAAAAAAA (Up to 31 digits)	alphanumeric characters	dependent on the product (See Section 3.1 "Rules used for File naming".)		
Size of the data file	DataFileSize	NNNNNNNNNNN ((Up to 12 digits)	unit: <byte></byte>	dependent on the product		
File format of the data file	DataFileFormat	AAAAAAAA (Up to 16 digits)	character strings	PDS [STATIC]		
Name of the thumbnail file	ThumbnailFileName	AAAAAAAA (Up to 31 digits)	alphanumeric characters	dependent on the product (See Section 3.1 "Rules used for File naming".)		
Size of the thumbnail file	ThumbnailFileSize	NNNNNNNNNNN (Up to 12 digits)	unit: <byte></byte>	dependent on the product		
File format of the thumbnail file	ThumbnailFileFormat	AAAA (Up to 4 digits)	JPEG	JPEG [STATIC]		
Name of the instrument	InstrumentName	AAAAAAAA (Up to 16 digits)	character strings	GRS [STATIC]		
Processing level	ProcessingLevel	AAAAAAAA (Up to 16 digits)	character strings	dependent on the product (See Table 1-2 "Level")		
Product ID	ProductID	AAAAAAAA (Up to 30 digits)	character strings	dependent on the product (See Table 1-2 "Product_ID")		
Version number of the product	ProductVersion	AAAAAAAA (Up to 16 digits)	character strings	dependent on the product		
Access level	AccessLevel	N	values of 0-4	N/A		
Start time	StartDateTime	yyyy- mmddT hh: mm: ss.ssssssZ	DATE & TIME	dependent on the product		
Stop time	EndDateTime	yyyy- mmddT hh: mm: ss.ssssssZ	DATE & TIME	dependent on the product		
Upper left latitude of the scene	UpperLeftLatitude	SNN.NNNNNN	-90-90	90.0[STATIC]		
Upper left longitude of the scene	UpperLeftLongitude	NNN.NNNNNN	0-360	0.0[STATIC]		
Upper right latitude of the scene	UpperRightLatitude	SNN.NNNNNN	-90-90	90.0[STATIC]		
Upper right longitude of the scene	UpperRightLongitude	NNN.NNNNNN	0-360	360.0[STATIC]		
Lower left latitude of the scene	LowerLeftLatitude	SNN.NNNNNN	-90-90	-90.0[STATIC]		
Lower left longitude of the scene	LowerLeftLongitude	NNN.NNNNNN	0-360	360.0[STATIC]		
Lower right latitude of the scene	LowerRightLatitude	SNN.NNNNNN	-90-90	-90.0[STATIC]		
Lower right longitude of the scene	LowerRightLongitude	NNN.NNNNNN	0-360	360.0[STATIC]		
Latitude of the scene center	SceneCenterLatitude	SNN.NNNNN	-90-90	0.0[STATIC]		
Longitude of the scene center	SceneCenterLongitude	NNN.NNNNNN	0-360	180.0[STATIC]		
Band storage type	BandStorageType	-	-	BAND_SEQUENTIAL [STATIC]		

Table 3-2 Catalog Information File Format

				*Refer to the PDS Standard Reference V3.5 Appendix A.19 "IMAGE".
Number of bands	Bands	Х	-	1 [STATIC]
Horizontal pixel count of image	LineSamples	XX	-	dependent on the product
Vertical pixel count of image	Lines	XX	-	dependent on the product
Pixel bit length	SampleBits	-	-	16[STATIC]
Pixel type	SampleType	-	-	MSB_INTEGER MSB_UNSIGNED_INTEGER * Refer to the PDS Standard Reference V3.5 Appendix C.1 and C.2 for further information.
Target name	TargetName	-	-	MOON [STATIC]
Comment	CommentText	-	character strings	dependent on the product
Alternative value outside assumption	InvalidConstant	XXXXXX	-	dependent on the product
Alternative value of missing value	MissingConstant	xxxxxx	-	dependent on the product
Offset	Offset	X.X	-	dependent on the product
Significant bit mask	SampleBitMask	-	-	11111111111111 [STATIC]

(*1) "DataFileName" is the stored file name of the product. For the detached format, this is the stored file name.

<Example of Catalog Information: Gamma Ray Intensity Map >

DataFileName = GRS_IMAP_K_071212_080217.img DataFileFormat = PDS # InstrumentName = GRS ProcessingLevel = Standard ProductID = GRS_GammaRayMap_A_K ProductVersion = 1.0AccessLevel = 1StartDateTime = 2007-12-14T04:15:06.000000ZEndDateTime = 2008-02-17T12:09:29.000000Z # UpperLeftLatitude = 90.0 UpperLeftLongitude = 0.0UpperRightLatitude = 90.0 UpperRightLongitude = 360.0LowerLeftLatitude = -90.0 LowerLeftLongitude = 0.0LowerRightLatitude = -90.0 LowerRightLongitude = 360.0 SceneCenterLatitude = 0.0SceneCenterLongitude = 180.0 Ħ CommentInfo = "this is a sample data, containing the intensity map of gamma rays emitted from Pottasium on lunar subsurface." FreeKeyword = keyword, T, contents # BandStorageType = BAND_SEQUENTIAL Bands = 1LineSamples = 360Lines = 180SampleBits = 16SampleType = MSB_UNSIGNED_INTEGER TargetName = MOON # CommentText = "this is a sample data, containing the intensity map of gamma rays emitted from Pottasium on lunar subsurface." InvalidConstant = 65535 MissingConstant = 0 Offset = 0.0 SampleBitMask = 11111111111111 ThumbnailFileName = GRS_IMAP_K_071212_080217.jpg ThumbnailFileSize = 75402 ThumbnailFileFormat = JPEG DataFileSize = 260590