

# How to use conversion matrixes for Akebono/PWS/PY data

March 15, 2017

A. Kumamoto

## 1. Introduction

Due to the spacecraft spin (7.5 rpm), the directions of two electric field components ( $E_1$  and  $E_2$ ) and three magnetic field components ( $B_1$ ,  $B_2$ , and  $B_3$ ) provided in `ak_h1_pws_py_yyyymmdd_v01.cdf` change depending on time. So, some matrixes for conversion from antenna's coordinate system to equatorial coordinate system are also provided in the same data file. How to obtain two electric field components in equatorial coordinate system ( $E_x$  and  $E_y$ ) is described in Section 2. How to obtain three magnetic field components in equatorial coordinate system ( $B_x$ ,  $B_y$ , and  $B_z$ ) is described in Section 3.

## 2. How to obtain two electric field components in equatorial coordinate system

In CDF file, you will find zvar named "MatE\_SC" with 4 components, and zvar named "MatSC\_EQ" with 9 components. From these variables, you can obtain the following two conversion matrixes:

$$M_{E-SC} = \begin{bmatrix} \text{MatE\_SC}[0] & \text{MatE\_SC}[1] & 0 \\ \text{MatE\_SC}[2] & \text{MatE\_SC}[3] & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad (2.1)$$

$$M_{SC-EQ} = \begin{bmatrix} \text{MatSC\_EQ}[0] & \text{MatSC\_EQ}[1] & \text{MatSC\_EQ}[2] \\ \text{MatSC\_EQ}[3] & \text{MatSC\_EQ}[4] & \text{MatSC\_EQ}[5] \\ \text{MatSC\_EQ}[6] & \text{MatSC\_EQ}[7] & \text{MatSC\_EQ}[8] \end{bmatrix} \quad (2.2)$$

Then, two electric field components in equatorial coordinate system ( $E_x$  and  $E_y$ ) can be obtained as follows:

$$\begin{bmatrix} E_x \\ E_y \\ 0 \end{bmatrix} = M_{SC-EQ} M_{E-SC} \begin{bmatrix} E_1 \\ E_2 \\ 0 \end{bmatrix} \quad (2.3)$$

## 3. How to obtain three magnetic field components in equatorial coordinate system

In CDF file, you will find zvar named "MatB\_SC" with 9 components, and zvar named "MatSC\_EQ" with 9 components. From these variables, you can obtain the following two conversion matrixes:

$$M_{B-SC} = \begin{bmatrix} \text{MatB\_SC}[0] & \text{MatB\_SC}[1] & \text{MatB\_SC}[2] \\ \text{MatB\_SC}[3] & \text{MatB\_SC}[4] & \text{MatB\_SC}[5] \\ \text{MatB\_SC}[6] & \text{MatB\_SC}[7] & \text{MatB\_SC}[8] \end{bmatrix} \quad (3.1)$$

$$M_{SC-EQ} = \begin{bmatrix} \text{MatSC\_EQ}[0] & \text{MatSC\_EQ}[1] & \text{MatSC\_EQ}[2] \\ \text{MatSC\_EQ}[3] & \text{MatSC\_EQ}[4] & \text{MatSC\_EQ}[5] \\ \text{MatSC\_EQ}[6] & \text{MatSC\_EQ}[7] & \text{MatSC\_EQ}[8] \end{bmatrix} \quad (3.2)$$

Then, three magnetic field components in equatorial coordinate system ( $B_x$ ,  $B_y$  and  $B_z$ ) can be obtained as follows:

$$\begin{bmatrix} B_x \\ B_y \\ B_z \end{bmatrix} = M_{SC-EQ} M_{B-SC} \begin{bmatrix} B_{1'} \\ B_{2'} \\ B_{3'} \end{bmatrix} \quad (3.3)$$