## Sample Results Summary Sheet Please return this form to the Curator for each allocated Sample

Sample ID: RA-QD02-0121 PI: Eizo Nakamura

**Type and date of analysis performed:** major element analysis (SEM-EDS, and EPMA-WDS), trace element (SIMS) [Jul 10-20, 2011], and oxygen-isotope analysis (HR-SIMS) [May 19, 2011]

**Elements or phases identified:** major phases: olivine, low-Ca pyroxene; minor phase: troilite, plagioclase, K-feldspar, glass

## Contaminant phases identified: No

**Sample handling:** exposed in atmosphere, glued by glycol phthalate, coated C, sliced by FIB, and polished the FIB-sliced slab after acid-leaching, coated Au

**State of sample pre-analysis:** atmosphere, glued, C-coated, FIB-sliced, In-mounted, polished section, Au coted

**State of sample post-analysis:** atmosphere, glued, C-coated, FIB-sliced, In-mounted, polished section, Au coted, sputtered by (spotted by) Cs- and O-beams

**Analysis data Notes:** This sample (original size: 40×30 µm) consists of olivine and low-Ca pyroxene, with the olivine showing sets of sharply defined lamellae with widths at the sub-µm scale. These lamellae could reflect high strain rates and high shear stresses associated with shock compression. An object with a ropey fabric, observed on and along a crack cross-cutting the lamellae, appears to have originated from melt. Ratios of Fe/Mg and Mn/Fe in olivine and low-Ca pyroxene fall within the range for LL-ordinary chondrites. See details in Nakamura et al. (2012)'s "grain A".



| Target                  | Grain A           |        |                                  |        |
|-------------------------|-------------------|--------|----------------------------------|--------|
| Phase                   | Ol <sub>n=2</sub> |        | low-Ca Px <sub>n=2</sub>         |        |
| SiO <sub>2</sub>        | 39.61             | (1.59) | 53.85                            | (1.06) |
| TiO <sub>2</sub>        | -                 |        | 0.18                             | (0.01) |
| $Al_2O_3$               | -                 |        | 0.41                             | (0.32) |
| $Cr_2O_3$               | -                 |        | -                                |        |
| FeO                     | 24.57             | (1.13) | 15.38                            | (0.19) |
| NiO                     | -                 |        | -                                |        |
| MnO                     | 0.49              | (0.03) | 0.49                             | (0.02) |
| MgO                     | 35.97             | (1.03) | 28.42                            | (0.73) |
| CaO                     | -                 |        | 0.61                             | (0.12) |
| Na <sub>2</sub> O       | -                 |        | -                                |        |
| K <sub>2</sub> O        | -                 |        | -                                |        |
| total                   | 101.4             |        | 99.3                             |        |
| Formula                 | fo <sub>72</sub>  |        | wo <sub>1</sub> en <sub>75</sub> |        |
| Mg#                     | 72                | (0.4)  | 76                               | (0.2)  |
| (Fe/Mg) <sub>atom</sub> | 0.38              |        | 0.3                              |        |
| (Fe/Mn) <sub>atom</sub> | 49                |        | 31                               |        |



| Target  | Spot | Phase                                      | $\delta(^{18}\mathrm{O}/^{16}\mathrm{O})$ | $\delta(^{17}O/^{16}O)$ | $\Delta ({}^{17}O/{}^{16}O)$ |
|---------|------|--------------------------------------------|-------------------------------------------|-------------------------|------------------------------|
| Grain A | 802  | Ol <sub>0.5</sub> low-Ca Px <sub>0.5</sub> | 6.9                                       | 4.1                     | 0.5                          |
| Grain B | 694  | Ol <sub>0.95</sub> Pl <sub>0.05</sub>      | 5.2                                       | 5.2                     | 2.5                          |
|         | 720  | Ol <sub>0.8</sub> Pl <sub>0.2</sub>        | 2.4                                       | 2.5                     | 1.3                          |
|         | 721  | Ol <sub>0.8</sub> Pl <sub>0.2</sub>        | 4.0                                       | 4.6                     | 2.5                          |
|         | 723  | Ol <sub>0.6</sub> Pl <sub>0.4</sub>        | 5.1                                       | 5.0                     | 2.3                          |
| Grain C | 755  | Di                                         | 7.2                                       | 5.5                     | 1.8                          |
|         | 756  | Di                                         | 8.0                                       | 4.2                     | 0.1                          |
|         | 765  | Pl*                                        | 8.8                                       | 5.8                     | 1.2                          |
| Grain D | 782  | low-Ca Px                                  | 2.9                                       | 2.6                     | 1.1                          |
|         | 783  | low-Ca Px                                  | 1.7                                       | 1.7                     | 0.8                          |

Supplemental Table 7 | Chemical compositions of the Itokawa grains determined using the Cameca ims-5f ion microprobe. Abundances are expressed in a unit of  $\mu g \cdot g^{-1}$  except for SiO<sub>2</sub>. In-run uncertainty ( $1\sigma_{mean}$ ) is provided in parentheses. Note that SiO<sub>2</sub> concentration (wt.%) is obtained by electron microprobe analyses (Supplemental Table 1). For analyses sampling two phases, proportions of the two phases are indicated, and SiO<sub>2</sub> concentration<sup>§</sup> was calculated using these proportions. Dashes and dots indicate "not available" and "not analyzed", respectively. . † and ‡ were obtained in "LIGHT" and "RARE-EARTH" sessions, respectively.

| Target                         | Grain A                                          |        | Grain B |        | Grain B                             |             | Grain B |       | Grain B                             |         | Grain B                             |       |
|--------------------------------|--------------------------------------------------|--------|---------|--------|-------------------------------------|-------------|---------|-------|-------------------------------------|---------|-------------------------------------|-------|
| Spot                           | 1                                                |        | 2       |        | 3                                   |             | 4       |       | 5                                   |         | 6                                   |       |
| Phase                          | Ol <sub>0.5</sub><br>low-Ca<br>Px <sub>0.5</sub> |        | Ol      |        | Ol <sub>0.9</sub> Pl <sub>0.1</sub> |             | Pl      |       | Pl <sub>0.3</sub> Ol <sub>0.7</sub> |         | Pl <sub>0.6</sub> Ol <sub>0.4</sub> |       |
| SiO <sub>2</sub>               | 39.61                                            | §      | 38.93   |        | 38.93                               | §           | 65.40   |       | 65.40                               | §       | 65.40                               | §     |
| TiO <sub>2</sub>               | 1,300                                            | (44)   | -       | (19)   | •••                                 |             | 360     | (70)  | • • •                               |         | •••                                 |       |
| $Al_2O_3$                      | 1,500                                            | (21)   | 430     | (10)   | •••                                 |             | 15,000  | (840) | •••                                 |         | •••                                 |       |
| Cr <sub>2</sub> O <sub>3</sub> | 660                                              | (9)    | -       |        | •••                                 |             | 1,700   | (390) | •••                                 |         | •••                                 |       |
| FeO                            | •••                                              |        | •••     |        | •••                                 |             | •••     |       | •••                                 |         | •••                                 |       |
| NiO                            | -                                                |        | -       |        | •••                                 |             | -       |       | • • •                               |         | • • •                               |       |
| MnO                            | 4,600                                            | (26)   | 7,100   | (50)   | •••                                 |             | 1,200   | (23)  | • • •                               |         | • • •                               |       |
| MgO                            | •••                                              |        | •••     |        | •••                                 |             | • • •   |       | • • •                               |         | • • •                               |       |
| CaO                            | 4,500                                            | (170)  | 110     | (50)   | •••                                 |             | 15,000  | (540) | •••                                 |         | •••                                 |       |
| Na <sub>2</sub> O              | 39                                               | (1)    | 120     | (2)    | •••                                 |             | 40,000  | (380) | •••                                 |         | •••                                 |       |
| $K_2O$                         | -                                                |        | 19      | (1)    | •••                                 |             | 6,100   | (83)  | •••                                 |         | •••                                 |       |
| $P_2O_5$                       | -                                                |        | 720     | (10)   | •••                                 |             | 2,100   | (210) | •••                                 |         | •••                                 |       |
| $H_2O$                         | 580                                              | (7)    | 690     | (15)   | •••                                 |             | 350     | (9)   | •••                                 |         | •••                                 |       |
| Li <sup>†</sup>                | -                                                |        | 7.9     | (0.1)  | •••                                 |             | 3.0     | (0.1) | •••                                 |         | •••                                 |       |
| Li‡                            | 0.51                                             | (0.03) | 2.7     | (0.1)  | 2.5                                 | (0.2)       | • • •   |       | 1.3                                 | (0.1)   | 3.0                                 | (0.5) |
| В                              | -                                                |        | -       |        | •••                                 |             | -       |       | •••                                 |         | •••                                 |       |
| F                              | 25                                               | (2)    | 4.3     | (0.3)  | •••                                 |             | 36      | (1)   | •••                                 |         | •••                                 |       |
| Cl                             | 5.6                                              | (0.3)  | -       |        | •••                                 |             | 11      | (1)   | •••                                 |         | •••                                 |       |
| Sr                             | 0.11                                             | 0.0    | 5.2     | (0.4)  | 17                                  | (4)<br>(0.0 | •••     |       | 64                                  | (7)     | 83                                  | (15)  |
| Y                              | 0.27                                             | (0.02) | 0.26    | (0.13) | 0.16                                | 7)          | •••     |       | 1.1                                 | (0.1)   | 54                                  | (9)   |
| Zr                             | 0.78                                             | (0.05) | 0.44    | (0.09) | 1.3                                 | (0.1)       | •••     |       | 2.8                                 | (0.6)   | 3.2                                 | (0.5) |
| Nb                             | 2.3                                              | (0.2)  | 0.74    | (0.27) | 1.9                                 | (1.4)       | •••     |       | 15                                  | (2)     | 45                                  | (8)   |
| Ва                             | -                                                |        | -       |        | -                                   |             | •••     |       | -                                   |         | -                                   |       |
| La                             | -                                                |        | -       |        | -                                   |             | • • •   |       | -                                   |         | -                                   |       |
| Ce                             | -                                                |        | -       |        | -                                   |             | • • •   |       | -                                   |         | -                                   |       |
| Pr                             | -                                                |        | -       |        | -                                   |             | •••     |       | -                                   |         | -                                   |       |
| Nd                             | -                                                |        | -       |        | -                                   |             | • • •   |       | 0.52                                | (0.002) | 8.2                                 | (1.4) |
| Sm                             | -                                                |        | -       |        | -                                   |             | • • •   |       | -                                   |         | -                                   |       |
| Eu                             | -                                                |        | -       |        | -                                   |             | •••     |       | -                                   |         | -                                   |       |
| Gd                             | -                                                |        | -       |        | -                                   |             | •••     |       | -                                   |         | -                                   |       |
| Dy                             | -                                                |        | -       |        | -                                   |             | • • •   |       | -                                   |         | -                                   |       |
| Er                             | -                                                |        | -       |        | -                                   |             | •••     |       | -                                   |         | -                                   |       |
| Yb                             | -                                                |        | -       |        | -                                   |             | •••     |       | -                                   |         | -                                   |       |
| Lu                             | -                                                |        | -       |        | -                                   |             | •••     |       | -                                   |         | -                                   |       |
| Hf                             | -                                                |        | -       |        | -                                   |             | •••     |       | -                                   |         | -                                   |       |