Marangoni Exp 1 (MEIS-1)

This page shows overall information of Marangoni Exp 1 (MEIS-1) including lists of investigators, sample material, related publication, and references of data, experiment cell, and facility. Click here to check the parameter index of the experiment and get related data.

Overview
title Chaos, Turbulence and its Transition Process in Marangoni Convection (series 1)
category Marangoni
type ISS Experiment
facility Fluid Physics Experiment Facility
cell Marangoni Surface
start date (GMT) 2008-08-19 (232)
end date (GMT) 2008-10-17 (291)
note Target: critical Delta T, Hydrothermal wave, Lquid Bridge separation, Detached mode -> Re-wetting
Investigators
function name organization
PI Hiroshi KAWAMURA Tokyo University of Science
CI Koichi NISHINO Yokohama National University
CI Ichiro UENO Tokyo University of Science
CI Mitsuru OHNISHI Japan Aerospace Exploration Agency
CI Masahiro KAWAJI University of Toronto
Liquid Bridge
D (diameter) [mm] 30
L (length) [mm] 3 - 60
V/R (volume ratio = actual liquid bridge volume / straight liquid bridge volume) 0.85 - 0.95
Sample (working fluid)
material name silicone oil
manufacture Shin-Etsu Chemical Co., Ltd.
model number KF-96L-5CS
density @25degC. [kg/m3] 912.35
kinematic viscosity @25degC. [m2/s] 5.00E-6
temperature coefficient of surface tension [N/mK] -6.58E-05
thermal diffusivity [m2/s] 7.46E-08
Sample (dye)
N/A
Sample (tracer particle)
material name Gold-coated acrylic sphere particles
manufacture Soken Chemical & Engineering Co., Ltd.
diameter [micro meter] 180 30
amount 15 particles 0.3w% for L/R=0.64 liquid bridge
density @25degC. [kg/m3] 1364.27 1485.68
Related Publication
[1] Takakusagi, T. and Ueno, I., “Flow Patterns Induced by the Thermocapillary Effect and Resultant Structures of Suspended Particles in a Hanging Droplet.”, Langmuir, Vol. 33, pp 13197–13206 (2017) DOI: 10.1021/acs.langmuir.7b02789
[2] Motegi, K., M. Kudo and Ueno, I., “Linear stability of buoyant thermocapillary convection for a high-Prandtl number fluid in a laterally heated liquid bridge”, Phys Fluids, Vol. 29, 044106 (2017) DOI: 10.1063/1.4979964
[3] Toyama, A., Gotoda, A., Kaneko, T., Ueno, I., “Existence Conditions and Formation Process of Second Type of Spiral Loop Particle Accumulation Structure (SL-2 PAS) in Half-zone Liquid Bridge”, Microgravity Science and Technology, Vol. 29, Issue 4, pp 263–274 (2017) DOI: 10.1007/s12217-017-9544-y
[4] RomanĂ², F., Kuhlmann, H.C., Ishimura, M. and Ueno, I., “Limit cycles for the motion of finite-size particles in axisymmetric thermocapillary flows in liquid bridges”, Phys Fluids, Vol. 29, 093303 (2017) DOI: 10.1063/1.5002135
[5] Yano, Y., Nishino, K., Ueno, I., Matsumoto, S. and Kamotani, Y., “Sensitivity of hydrothermal wave instability of Marangoni convection to the interfacial heat transfer in long liquid bridges of high Prandtl number fluids”, Phys Fluids, Vol.29, 044105 (2017) DOI: 10.1063/1.4979721
[6] Yano, T., Maruyama, K., Matsunaga, T. and Nishino, K., “Effect of ambient gas flow on the instability of Marangoni convection in liquid bridges of various volume ratios”, Int. J. Heat Mass Transfer, Vol. 99, pp.182–191 (2016) DOI: 10.1016/j.ijheatmasstransfer.2016.03.085
[7] Gotoda, M., Melnikov, D. E., Ueno, I. and Shevtsova, V., “Experimental study on dynamics of coherent structures formed by inertial solid particles in three-dimensional periodic flows”, Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 26, 073106 (2016) DOI: 10.1063/1.4955271
[8] Nishino, K., Yano, T., Kawamura, H., Matsumoto, S., Ueno, I. and Ermakov, M. K., “Instability of thermocapillary convection in long liquid bridges of high Prandtl number fluids in microgravity”, J. Cryst. Growth, Vol.420, pp. 57–63 (2015) DOI: 10.1016/j.jcrysgro.2015.01.039
[9] Matsugase, T., Ueno, I., Nishino, K., Ohnishi, M., Sakurai, M., Matsumoto, S. and Kawamura, H., “Transition to chaotic thermocapillary convection in a half zone liquid bridge”, Int. J. Heat Mass Transfer, Vol.89, pp.903–912 (2015) DOI: 10.1016/j.ijheatmasstransfer.2015.05.041
[10] Melnikov, D. E., Shevtsova, V., Yano T. and Nishino, K., “Modeling of the experiments on the Marangoni convection in liquid bridges in weightlessness for a wide range of aspect ratios”, Int. J. Heat Mass Transfer, Vol.87, pp.119–127 (2015) DOI: 10.1016/j.ijheatmasstransfer.2015.03.016
[11] Yano, T., Nishino, K., Kawamura, H., Ueno, I. and Matsumoto, S., “Instability and associated roll structure of Marangoni convection in high Prandtl number liquid bridge with large aspect ratio”, Physics of Fluids, Vol. 27, No. 2, 024108 (2015) DOI: 10.1063/1.4908042
[12] Yano, T. and Nishino, K., “Effect of liquid bridge shape on the oscillatory thermal Marangoni convection”, European Physical Journal Special Topics, Vol. 224, pp. 289–298 (2015) DOI: 10.1140/epjst/e2015-02360-8
[13] Gotoda, M., Sano, T., Kaneko, T. and Ueno, I., “Evaluation of existence region and formation time of particle accumulation structure (PAS) in half-zone liquid bridge”, European Physical Journal Special Topics, Vol. 224, pp. 299–307 (2015) DOI: 10.1140/epjst/e2015-02361-7
[14] Sato, F., Ueno, I., Kawamura, H., Nishino, K., Matsumoto, S., Ohnishi M. and Sakurai, M., “Hydrothermal Wave Instability in a High-Aspect-Ratio Liquid Bridge of Pr > 200 — On-Orbit Experiments in the Japanese Experiment Module 'Kibo' Aboard the International Space Station”, Microgravity Sci. Technol., Vol. 25, pp.43–58 (2013) DOI: 10.1007/s12217-012-9332-7
[15] Matsunaga, T., Mialdun, A., Nishino, K. and Shevtsova, V., “Measurements of gas/oil free surface deformation caused by parallel gas flow”, Physics of Fluids, Vol. 24, pp. 062101 (17 pp.) (2012) DOI: 10.1063/1.4727908
[16] Kawamura, H., Nishino, K., Matsumoto, S. and Ueno, I., “Report on Microgravity Experiments of Marangoni Convection Aboard International Space Station”, Transactions of ASME, Journal of Heat Transfer, Vol. 134, pp. 031005–031018 (2012) DOI: 10.1115/1.4005145
[17] Yano, T., Nishino, K., Kawamura, H., Ueno, I., Matsumoto, S., Ohnishi, M. and Sakurai, M., “3-D PTV measurement of Marangoni convection in liquid bridge in space experiment”, Experiments in Fluids, Vol. 53, pp. 9–20 (2012) DOI: 10.1007/s00348-011-1136-9
[18] Yano, T., Nishino, K., Kawamura, H., Ueno, I., Matsumoto, S., Ohnishi, M. and Sakurai, M., “Space experiment on the instability of Marangoni convection in large liquid bridge — MEIS-4: Effect of Prandtl number —”, J. Physics: Conf. Ser., Vol. 327, pp. 012029–012036 (2011) DOI: 10.1088/1742-6596/327/1/012029
[19] Sakagami, K., Goto, M., Matsumoto, S. and Ohkuma, H., “Entering “A NEW REALM” of KIBO Payload Operations — Continuous efforts for microgravity experiment environment and lessons learned from real time experiment operations in KIBO —”, J. Physics: Conf. Ser., Vol. 327, pp. 012054–012067 (2011) DOI: 10.1088/1742-6596/327/1/012054
[20] Yano, T., Nishino, K., Kawamura, H., Ohnishi, M., Ueno, I., Matsumoto, S. and Yoda, S., “3-D flow structure of oscillatory thermocapillary convection in liquid bridge in MEIS”, Int. J. Microgravity Sci. Appl, Vol. 28, No. 2, pp. 126–131 (2011)
[21] Abe, Y., Ueno, I. and Kawamura, H., “Dynamic Particle Accumulation Structure (PAS) due to Thermocapillary Effect in Non-Cylindrical Half-Zone Liquid Bridge, in Interdisciplinary Transport Phenomena 1161 (ed. Sadhal, S.)”, New York Academy of Science, New York, pp.240–245 (2009) ISBN 10: 1573317128 ISBN 13: 9781573317122
[22] Ueno, I., Abe, Y. Noguchi, K. and Kawamura, H., “Dynamic particle accumulation structure (PAS) in half-zone liquid bridge — Reconstruction of particle motion by 3-D PTV —”, Adv. Space Research, Vol.41, pp.2145–2149 (2008) DOI: 10.1016/j.asr.2007.08.039
[23] Abe, Y., Ueno, I. and Kawamura, H., “Effect of Shape of HZ Liquid Bridge on Particle Accumulation Structure (PAS)”, Microgravity Sci. Technol. Vol. XIX, 84–86 (2007) DOI: 10.1007/BF02915760
[24] Tanaka, S., Ueno, I., Kawamura, H. and Schwabe, D., “Flow structure and dynamic particle accumulation in thermocapillary convection in a liquid bridge”, Phys. Fluids Vol.18, 067103 (2006) DOI: 10.1063/1.2208289
[25] Nishimura, M., Ueno, I., Nishino, K., and Kawamura, H., “3-D PTV measurement of oscillatory thermocapillary convection in half-zone liquid bridge”, Exp. Fluids, Vol.38, pp.285–290 (2005) DOI: 10.1007/s00348-004-0885-0
[26] Ueno, I., Tanaka, S., Kawamura, H., “Various flow patterns in thermocapillary convection in half-zone liquid bridge of high Prandtl number fluid”, Adv. Space Research, Vol. 32, pp.143–148 (2003) DOI: 10.1016/S0273-1177(03)90244-4
[27] Ueno, I., Tanaka, S., and Kawamura, H., “Oscillatory and chaotic thermocapillary convection in a half-zone liquid bridge”, Phys. Fluids 15, pp.408–416 (2003) DOI: 10.1063/1.1531993
[28] Kawamura, H., Ueno, I. and Ishikawa, T., “Study of Thermocapillary Flow in a Liquid Bridge towards an On-Orbit Experiment aboard the ISS”, Advances in Space Research, Vol.29, pp.611–618 (2002) DOI: 10.1016/S0273-1177(01)00651-2
References
file name note
meis1_parameter.pdf (140KB) Experiment parameter list of Marangoni Exp 1 (MEIS-1).
meis1_profile.pdf (6,686KB) Temperature profiles for all experiments of Marangoni Exp 1 (MEIS-1).
meis1-2_telemetry_list.pdf (65KB) Telemetry list and Acronyms of Marangoni Exp 1 and 2.
aos_los.pdf (16KB) Chart of AOS/LOS of satellite communications.
ms30_functional_diagram.pdf (24KB) Functional diagram of Marangoni Surface (MS30).
ms30_cooling_disk.pdf (38KB) Drawing, cooling disk of Marangoni Surface (MS30).
ms30_heating_disk_detail.pdf (183KB) Drawing, heating disk of Marangoni Surface (MS30).
fpef_3d_camera_dimension.pdf (34KB) Drawing, optical dimensions of 3D camera with liquid bridge.
ms30_observation_system_layout.pdf (47KB) Drawing, observation systems layout of Marangoni Surface (MS30).
ms30_surface_velocity_system_dimension.pdf (41KB) Drawing, surface velocity observation system of Marangoni Surface (MS30).